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Abstract-The renewal models used by several authors for representing the turbulent process in the vicinity 
of a boundary give only the dependence of the transfer coefficient on the diffusion coefficient or thermal 
diffusivity. In this papera number of ways are suggested by means of which this partial information supplied 
by renewal models may be completed with information of a hydrodynamic nature. The first one makes 
use of dimensional considerations similar to those used in the classical theory; the second way is based on 
the instability theory and the third one on certain assumptjons concerning the form of the solutions 
of the equation of motion in the turbulent quasi-steady state. The first way is appiied to the mass transfer 
in the vicinity of a solid boundary and also to the mass transfer in the vicinity of a fluid boundary. The 
other two ways are applied to the case of mass transfer in a liquid film moving along a vertical wail and 
to the case of heat transfer between a fluidized bed and a watl. 

A comparison between the physical model method and the classical one is also included. 

N~MK~CLATU~K 

concentration ; 
specific heat of packets of particles ; 
diameter of circle described by ends of 
stirrer arms ; 
diffusion coef&ieent ; 
friction factor ; 
acceleration of gravity; 
heat-transfer coefficient ; 
imaginary part of the coefficient multi- 
plying the time in the expression of the 

X, distance aiong the fluid motion ; 

Xot the length of a “fluid particle” path ; 
YF distance to the fluid interface; 
r, distance to the solid wall. 

average velocity ; 
~-compo~eRt of veIocity; 
= WP; 
valueofufor Y= 6; 
volume of liquid in the vessel provided 
with stirrer; 

perturbation ; Greek symbols 
mass-transfer coefficient ; 
thermal conductivity in the packets of 
particles ; 
exponent ; 
number of stirrer revolutions per unit 
time ; 
consumption power of the agitator ; 
= “j/x,; 
time ; 
~-component of fluid velocity; 
valueof~for Y= 6; 
velocity at the ~~~ni~g of a path of 
length x0 ; 
value of u at the interface; 

quantity given by tuition (14); 
volumetric liquid flow rate per unit 
width ; 
film thickness ; 
turbulent diffusion coefficient; 
energy dissipated per unit votume in unit 

time in vicinity of the boundary; 
dominant wave length ; 
wave length ; 
kinematic viscosity of theduid ; 
renewal frequency ; 
fluid density ; 
density of the packets of particles ; 
surface tension ; 
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TO, 
f shear stress at the wall ; z,/p = z ui ; 

friction factor. 

1. INTRODUCTION 

THE AIM of the present paper is to examine and 
analyse comparatively the means which may be 
applied for deducing theoretically equations for 
the transfer coefficient in the immediate vicinity 
of a boundary in the case of turbulent motion. 
These equations may be obtained in two man- 
ners. One of them proceeds from the turbulent 
transport equations obtained by the procedure 
suggested by Reynolds, while the other, initiated 
by Danckwerts [l], uses as a starting point a 
physical model of the turbulent process. Neither 
method is wholly satisfactory because they either 
make use of assertions which are arbitrary to a 
large extent, as for instance the assumptions 
made concerning the mixing length* and the 
coefficient of turbulent diffusion, or they are 
based on a model instead of this latter to result 
as a consequence of the equations of motion. 
However, their use is justified in the absence of 
a more satisfactory theory of turbulence. In the 
following we shall consider particularly the 
model method. We shall discuss the other 
method (the classical method) too, in order to 
compare the two methods. 

In the papers where the second method was 
applied [14], the emphasis was put onestablish- 
ing a relation between the transfer coefficient 
and the diffusion coefficient. This leaves the 
impression that by using the physical model 
method only this partial information could be 
obtained, whereas by using the other method 
full information would be gathered. In the 
present paper a number of ways are suggested by 
means of which the partial information supplied 
by the model may be completed with information 
of a hydrodynamic nature. The first one makes 
use of dimensional considerations similar to 

* We leave out the fact that the mixing length concept is 
unsatisfactory for the region in the immediate vicinity of the 
wall. 

those applied in the classical theory ; the second 
way is a synthesis of the model and the instability 
theory; finally, the third way is based on certain 
assumptions concerning the form of the solu- 
tions of the equations of motion in the turbulent 
quasi-steady state. 

The first way has been suggested by the author 
in his previous papers [5,6] concerning the mass 
transfer in the vicinity of a solid boundary. 
That case will be treated in the present work both 
for the sake of completeness and, especially, with 
the aim of comparing the means employed with 
those of the classical theory. The dimensional 
considerations way will be applied also to the 
case of the mass transfer in the vicinity of a fluid 
boundary and the results will be compared all 
the time with those of the classical theory. The 
other two ways will be used for the case of mass 
transfer in a liquid film moving along a vertical 
wall and for the case of heat transfer between a 
fluidized bed and a wall. 

2. THE DIMENSIONAL CONSIDERATIONS WAY 

2.1 The case of a solid boundary 
Let us consider a liquid in turbulent motion 

along a solid boundary (e.g. the turbulent flow 
of a liquid in a pipe). The movements which 
take place in the immediate vicinity of the wall 
have been investigated experimentally by Fage 
and Townend [7] who have followed up the 
movements along the wall of dust particles sus- 
pended in a liquid with the help of an ultra 
microscope. They have noticed that groups of 
dust particles perform large lateral displace- 
ments and that the motion which takes place 
within the short space between two successive 
lateral displacements is quasi-rectilinear. These 
experimental facts suggest the representation of 
the turbulent process in the immediate vicinity 
of a wall by means of a model proposed by the 
author [6]; in that model it is considered that 
laminar boundary layers are formed along the 
boundary on short portions of length x0. In 
other words, the turbulent fluctuations bring 
liquid elements in contact with the boundary 
where they move along it over distances of length 
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x,, and then dissolve in the bulk of the liquid. 
The process is repeated at intervals of length x0. 
The path-length of the “liquid particles” is 
undoubtedly subject to fluctuations. As a simpli- 
fying assumption it will be considered that such 
fluctuations are small and consequently that the 
mass transfer on each path-length takes place 
under quasi-steady state conditions. The model 
has been improved [6] in several respects, among 
others by taking into account the suggestion 
made by Kramers and Beek [8] and Harriot [4], 
namely that in the immediate vicinity of the wall 
there is a thin film of liquid which is not renewed 
(followed by a layer of liquid wherein renewal 
takes place). The good agreement with experi- 
mental results obtained with the aid of the simple 
model described above seems to show that the 
film, though real, is, however, so thin that it does 
not affect essentially the value of the transfer 
coefficient. For this reason and since we want 
only to point out the type of reasoning applied 
on the model method, we have retained the simple 
model described above. 

It follows from the model that for every inter- 
val of length x0 the equation holding for laminar 
motion may be applied. Since the path of length 
x0 is short, it may be assumed that the thicknesses 
of the hydrodynamic and diffusion boundary 
layers which are formed in an element of liquid 
are smaller than its thickness and therefore that 
the equation holding for the laminar flow of a 
semi-infinite fluid along a wall may be used for 
the mass-transfer coefficient. The following 
equation is obtained for the mass-transfer co- 
efficient, defined as an average value over the 
interval of length x0 : 

kdq. ( )(> 
f 

vxo 
(1) 

Equation (1) gives the value of the mass-trans- 
fer coefficient for the region in the immediate 
vicinity of the wall. Since for liquids we have 
v/D % 1, the concentration varies appreciably 
only in the immediate vicinity of the wall and 
therefore the mass-transfer coefficient between 

the wall and the liquid is the same as that in the 
vicinity of the wall. 

The classical theory of turbulence suggests 
that in the immediate vicinity of the wall the 
motion of the liquid is characterized by the shear 
stress zo, the density p and the viscosity v of the 
fluid. It follows then that no and x0 are functions 
of TV, p and v. The number of the physical quan- 
tities being four, while that of the dimensions 
involved three, one can form, for each of the two 
dependent quantities, a single dimensionless 
group. Therefore : 

Equation (1) becomes 

D + z. + 
kK - 00 V 7 . 

(3) 

(4) 

There are cases where information concerning 
the dissipated energy rather than the shear 
stress ~~ is available, e.g. mass transfer in a liquid 
mixed with a stirrer. In such cases it is convenient 
to replace r. by the quantity to (dissipated 
energy per unit volume in unit time in the vicini- 
ty ofthe solid boundary). Dimensional considera- 
tions lead in this case to: 

x0 x v%olP)-*9 (5) 

VT0 + 
UOK - 9 ( > P 

and therefore 

k ~ D + v50 f (1 0 V P . 

It should be pointed out that equations 
(9-o-() are equivalent to equations (2)-(4) from 
which they can be deduced if one takes into 
account that 

50 1 To 2 -=-- 
P 0 VP. 

Equations (4) and (7) may be deduced also 
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by applying the classical theory, if it is assumed 
that the coefficient of turbulent diffusion, E, in 
the immediate vicinity of the wall is given by 
equation : 

The fact that E/Y is a function of 

is a consequence of dimensional considerations 
quite similar to those previously used with 
respect to x0 and ue. The turbulence theory 
suggests that E is a function of rO, p, v and U, 
and dimensional considerations iead to 

V \Yl\V,~’ 

In support of the value three for the exponent 
some arguments based on quasi-arbitrary as- 
sumptions concerning the mixing length and the 
velocity fluctuation may be adduced. 

Equations (4) and (7) are in excellent agree- 
ment with experimental results.* Equation (4). 
written under the form 

Nu cc Re 

has proved to be in agreement with the experi- 
mental results of Friend and Metmer [24] re- 
garding heat transfer to a liquid flowing turbu- 
lently in a tube and for which Pr >> 1.t 

Equation (7), too, is in good agreement with 

* Equations (4) and (7) were established initially with the 
help af the ctassical theory, the first by tin et ai. in f953 [9] 
and i~d~~endcntly by the author in 1954 [ 101, and the second 
by the author, again in 1954, and independently by Caider- 
bank and Moo-Young in 1961 [ 1 I]. Calderbank and Moo- 
Young have established equation (7) on the basis of the theory 
of isotropic turbulence. The authors have noted quite rightly 
that the conditions required by isotropic turbulence are very 
restrictive and that equation (7) should be established on 
other grounds. The equations have been also established 
using the model method in references [5] and [6]. 

t These authors have established equation (4’) by the 
classical method, using for e equation (8). 

experimental results concerning heat or mass 
transfer in a fluid mixed by using a stirrer. 
Assuming that Co = P/V and taking for the 
power ~nsurnp~jon of the agitator the expres- 
sion 

P =5 cpd5n3p, (9) 

where ‘p CC @12/v)-” with 0.20 c m -=z 0.30, the 
author estabhshed in his paper published in 
1954 [IO] the equation: 

kdf V” v f nd2 a 
-cc - 

D O( > D 
T qJ% (10) 

which is in good agreement with ex~r~ental 
results even as regards the dependence of the 
transfer coefficient on the speed of revolution of 
the stirrer. Experimental evidence has shown in 
fact that k cc no”@ [8]. 

The only condition which has to be fulfilled 
for the model to be used is that the length _yo of 
the path should be sufficiently small as compared 
with the length of the surface along which the 
liquid flows. (For instance in the case of a sphere 
or of a set of spheres x0 should be sufficiently 
smail as compared to the diameter of the par- 
ticle.) 

Equations (4) and (7) have been therefore 
established: firstly on the basis of a physical 
model completed with dimensional considera- 
tions; secondly on the basis of the equation for 
the mass flux from the ctassicaf theory (where in 
addition to the coefficient of molecular diffu- 
sion we have also the coefficient of turbulent 
diffusion). In the classical method, dimensional 
considerations similar to those applied in the 
previous ease are used for establishing an ex- 
pression for the coefficient of turbulent diffusion 
and an arbitrary assumption is made regarding 
the value of a certain exponent. In the model 
method, the physical model plays the part held 
by the selection of an exponent in the classical 
theory. Since the selection of a plausible physical 
model is fess arbitrary than that of a certain value 
for an exponent, it may be concluded that the 
physical model method seems logically more 
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satisfactory than the classical theory. In addition 
to this, a model supplies a certain understand- 
ing of the phenomenon of turbulence, which 
could not result from the quasi-arbitrary assump- 
tions about the velocity fluctuation, and the 
rather vague mixing length concept, made in 
order to justify the selection of the value of the 
exponent. 

2.2 The case of afluid boundary 
In the following we shall examine, by the two 

methods, the mass transfer through the free sur- 
face of a liquid film in turbulent motion along a 
vertical wall, and the mass transfer through the 
free surface of a liquid mixed by means of a 
stirrer, applying in both cases procedures similar 
to those employed in the previous section. 

The first problem was examined with the help 
of the classical theory by Levich [12]. He de- 
veloped a theory according to which turbulent 
viscosity and the coefficient of turbulent diffu- 
sion become zero on the interface as a conse- 
quence of the damping effect of surface tension, 
and the coefficient of turbulent diffusion in- 
creases with the square of the distance to the 
interface. The assumption that the state of 
turbulence at the interface is dependent on the 
characteristic velocity v0 = @a)*, surface tension 
0 and density p led him, by using dimensional 
considerations, to 

3 

E CK pv,JJ2. 
CT 

(11) 

It should be noted that for the mass transfer 
through a fluid boundary, only the relative velo- 
city to the interface contributes to the transfer by 
convection along a direction normal to the 
direction of the mean motion of the fluid. But 
this relative velocity is obviously zero at the 
interface. For this kinematical reason, the co- 
efficient of turbulent diffusion, which is in fact a 
consequence of that relative velocity, is nil at 
the fluid interface. (See also the Appendix.) 

The coefficient of turbulent diffusion increases 
with the velocity u,, and with distance y to the 
interface. The surface tension opposing the de- 

formations of the interface attenuates the turbu- 
lence, and therefore E decreases when 0 increases. 
E depends also on p. Since we are dealing with a 
region remote from a solid boundary, the effect 
of viscosity seems to be of little importance. 
Dimensional considerations lead to 

(11’) 

The condition that E should decrease when a 
increases requires that the exponent of the 
group y&/a should be higher than unity. If it 
is assumed that E cc y2, then we get equation (11). 

Using equation (11) for E, we obtain for the 
transfer coefficient the relation : 

(12) 

We shall examine the same problem with the 
help of the physical model described above. It is 
again considered that owing to turbulence the 
liquid particles come into contact with the 
boundary and after travelling a short distance 
they pass into the bulk of the liquid. However, in 
contrast with the case of a solid boundary, in the 
case of a fluid boundary the velocity of the inter- 
face is different from zero. For this reason we 
cannot any longer use equation (1) for the trans- 
fer coefficient, but we may use the equation which 
is valid for a semi-infinite fluid in laminar 
motion along a plane fluid surface. The last 
laminar case has been dealt with in literature 
[13, 141. Using the equation established by 
Potter [13], we obtain for the transfer coeffi- 
cient defined as an average value over the inter- 
val of length x0, the equation 

k = 20 74 + 115(Ui/UO) + UIJ ’ 

B 630 )(-> vxo ’ 
(13) 

where /? is given by 
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For very small values of ~i/~~ we get /? z 
(v/D)-* and equation (14) leads to equation (1). 
For values approaching unity, equation (14) 
leads to 

(1-Y 

This is just the case in the present situation, 
since in the vicinity of the interface the velocity 
is practically constant. 

The effect of turbulence becomes larger as ui 
increases. consequently x0 should decrease when 
Ui increases. On the other hand, surface tension 
attenuates the turbulence and this causes x0 to 
increase with (T. Finally x0 may be dependent 
also on the density p of the fluid. Dimensional 
considerations lead to 

x0 cc -!z- 
pi" 

Equation (15) becomes 

(17) 

Equation (17) has the same form as the equation 
proposed by Levich. It may be written easily in 

a more useful form for applications if we take 
into account that, in the case of turbulent mo- 
tion [15], 

6 = O.l72;r* g-+. (18) 

Equation (18) may be deduced from dimen- 
sional considerations if we take into account the 
fact that viscosity, which acts only in the im- 
mediate vicinity of the wall, and surface tension, 
which acts only in the vicinity of the interface, 
cannot affect essentially the value of 6, 

Putting 

equation (I 7) becomes 

Equatjon f19) may also be written 

As previously stated, the part played by vis- 
cosity has not been taken into account since the 
considered region is sufficiently remote from a 
solid surface. It should be noticed, however, that 
the rate of mass transfer may be dependent on the 
renewal of the interface with fresh elements of 
liquid having dimensions considerably smaller 
than the scale of turbulence. The motion of these 
small elements (which constitute the larger ele- 
ments having dimensions equal to that of the 
scale of turbulence) and therefore also their re- 
newal frequency depends on viscosity. If it is 
considered that viscosity plays a more im- 
portant part than surface tension,* then dimen- 
sional considerations lead to 

2 

& K Fy2, 

x0 K “, 
ui 

122) 

and for the coefficient of mass transfer we obtain, 
using either of the two methods, the equation 

EE SC* Re+. (23) 

It should be noted that, besides dimensional 
considerations, the classical theory introduces 
also the assumption that E CC y2. No experi- 
mental data are available for making a choice 
between equations (20) and (23). For this reason 
we have taken another example which could be 
treated in the same way as above, but for which 
experimental results, allowing a choice, are 
available. 

Let us consider a liquid mixed with an agitator 
and a gas which is absorbed by the liquid through 

(1% 

* The case where both physical constants become effective 
cannot be considered because the number of variables would 
be too great for obtaining an equation on dimensional 
considerations. 
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the free surface of the latter. The hydrodynamic 
process taking place in the vicinity of the inter- 
face may be characterized by the energy 5 
dissipated per unit volume in the vicinity of the 
interface, the density p and either by the surface 
tension CJ or the viscosity v. In the first case we 
obtain 

r 3/s ~ 

EK - 0 0 
-215 

Y2, (24) 
P P 

and 

tl 3/S ~ 

0 0 
-2/S 

SE - 

P P . 
(25) 

For the transfer coefficient both methods give 

kaD+i 
3/10 ~ 

0 0 
-z/10 

(26) 
P i . 

In the second case we get 

5 + 
E a - y2, 0 PV 

and 

5 + 
sa - . 0 PV 

(27) 

(28) 

For the transfer coefficient both methods lead 
to 

0 
+ 

kaDfi . 
PV 

(29) 

Putting c = P/V and using equation (9) for 
the power consumption, equations (26) and (29) 
become 

0 
-l/5 

k a D+ n9/10 q3/10 dt J/-3/10 a 
. (26) 

P 

k a D+ v-$ ,,a $ d5/4 I/-+ (29’) 
The experimental results obtained by Davies 

et al. [16] allow us to make a choice between 
equations (26) and (29) since they lead to 

k a no’62 (30) 

and therefore to the conclusion that the part 
played by viscosity is the more important. How- 
ever, the conclusion is not certain because 
equations (26’) and (29’) have been deduced 

under the not quite realistic assumption that the 
dissipated energy is uniformly distributed in the 
liquid. 

As to the comparison of the two methods, all 
the remarks stated in the preceding section are 
valid for the case of a fluid boundary too. 

An additional argument in favour of the model 
method is the fact that the method supplies a 
single equation [equation (13)] from which it 
follows quite naturally that in the case of a solid 
boundary k a D3 and in the case of a fluid 
boundary k a D”‘, the value of n’ depending on 
the ratio ui/uo. 

3. WAYS BASED ON THE INSTABILITY 

THEORY AND ON SOLUTIONS OF A CERTAIN 

TYPE OF THE EQUATION OF MOTION 

In the cases examined so far the part played 
by dimensional considerations is extremely im- 
portant. There are, however, many instances 
(particularly for fluid boundaries, as was the case 
in the preceding examples) where the number of 
quantities involved is too large for establishing 
equations on a dimensional basis for the various 
hydrodynamical parameters. On the other hand, 
even when dimensional considerations lead to 
equations there still are constant factors which 
have to be determined empirically. Other ways 
have to be found therefore for the solution of the 
problem. 

In this respect two ways seem to us possible 
for obtaining information regarding the quasi- 
steady-state turbulence. One of them is based on 
the theory of instability, while the other starts 
from certain assumptions regarding the quasi- 
steady-state turbulence itself. 

Within the framework of the first method of 
approach it may be considered that the quasi- 
steady-state turbulence represents the final stage 
of the increase of certain small perturbations 
applied to a virtual system in laminary motion. 
Unfortunately the increase of the perturbations 
can be followed up only when they are sufti- 
ciently small, in the validity range of the linear- 
ized theory of instability. As soon as the per- 
turbation has become sufficiently large, the 
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non-linear terms of the equation of motion can 
no longer be neglected, the linear approximation 
is no longer valid, the calculation becomes very 
involved and cannot be effected for the time 
being. However, the final stage of the increase 
process of the perturbations may be described, at 
least approximately, with the help of a renewal 
model. Also, among the small perturbations the 
one that grows faster (therefore the perturbation 
for which the reai part of the coefficient multiply- 
ing the time has the maximum value) imposes 
itself. It is then reasonable to consider that the 
characteristics of this perturbation are realized 
in the final stage. Since, on the one hand the 
renewal has a quasi-periodic spatial character, 
while on the other hand consequences of the 
dominant perturbation are realized in the final 
stage, we will assimilate the interval x0 to the 
wave length of the dominant perturbation. 

The second method of approach involves the 
choice of a certain type of random solution of 
the equation of motion. In this case too, the 
difficulties encountered are considerable so that 
we have to be content in the present with an 
approximate solution based on the description 
of the turbulent state with the help of a renewal 
model. The quasi-periodic character of the 
renewal process suggests that we look for 
periodic solutions of the equation of motion and 
the assimilation of x0 to their wave length. 

As an example we will consider the case of 
mass transfer in a liquid film in turbulent mo- 
tion along a vertical wall. Our task is made in 
this case considerably easier, as both the problem 
of the stability of the laminar flow of the film 
[17-191 and the problem of finding periodic 
solutions of the equation of motion [20] are 
treated in literature. 

Based on the theory of instability, one obtains 
for the dominant wave length the expression 

Therefore 

(31) 

Since 

ui z 5.82i-+ g” > (32’) 

it follows that 

(33) 

Equation (33) may be also written 

k v*(oip)* ) r 
O-96 2 - 

Oi) 

5:12 

jj-p-iv 
D 1’ . 

(34) 

It may be noted that equation (34) has an inter- 
mediate position between equations (20) and 
(23) established on the basis of dimensional 
considerations. 

The condition that the equation of motion 
should have periodic solutions has led Kapitza 
[20] to the following expression for the wave 
length of these motions : 

(35) 

Expression (35) differs from (31) only with 
respect to the constant factor which this time is 
somewhat smaller. consequently the final equa- 
tion too, differs from equation (34) only by the 
proportionality constant which is somewhat 
larger 

(36) 

It should be noted that in the representation 
suggested the wave motion and the turbulent 
motion have the same value for the wave length. 
The difference consists in the fact that in the case 
of turbulent motion renewal processes take place 
at intervals equal to L whereas in the case of 
wave motion the renewal is only partial. 
(Recently the simpler case of wave motion has 
been treated by Ruckenstein and Berbente with- 
out resorting to a model [21].) 

No experimental data are available for check- 
ing the equations established above. In any case 
it may be mentioned that the results obtained 
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closely approach those of the classical theory. 
However, unlike the classical theory, the methods 
discussed in the present section take into account 
to a larger extent the equations of motion of 
which they are approximate consequences. 

The author has been able to check experiment- 
ally a single case where the equation for the trans- 
fer coefficient was obtained by combining a 
renewal model with the stability theory, namely 
the case of the heat-transfer coefficient between 
a fluidized bed and a wall. In this case the trans- 
fer process has been represented by Mickley and 
Fairbanks [22] with the help of a model where it 
is considered that packets of particles are ex- 
changed between the bulk of the fluidized bed 
and the region in the vicinity of the wall. This 
renewal is determined by the “gas bubbles” 
passing through the fluidized bed. It is assumed 
that within the “packets of particles” the 
void fraction is equal to that corresponding 
to the minimum fluidization velocity and that 
the thermal conductivity is equal to that of the 
corresponding fixed bed. One obtains for the 
transfer coefficient the equation 

h = (k’c’p’w)f. (37) 

Unlike the models suggested above which have 
a quasi-steady-state character, the model used by 
Mickley and Fairbanks has a non-steady-state 
character since in every “point” at the boundary 
the packets of particles are replaced with packets 
from the bulk of the fluidized bed. The quasi- 
periodic character of this non-steady-state pro- 
cess has induced us to assimilate the renewal 
frequency o to 111/27~, where I represents the 
imaginary part of the coefficient multiplying 
the time in the expression of the perturbation 
calculated for the dominant wave length. 

No details are given here as they have been 
described in another paper [23]. Mention will be 
made only that good agreement with experi- 
mental data was found, the experimental values 
of w being comprised between 4 and 10 s-l while 
those supplied by our theory are between 5 and 
10 s-l. 
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4. CONCLUSION 

It may be said that the method which starts 
from a model seems more satisfactory from a 
logical standpoint than the classical theory even 
when hydrodynamic information is obtained on 
the basis of dimensional considerations. More- 
over, in contrast to the classical theory, this 
approach allows us to take into account the 
equations of motion to a larger extent; the re- 
sults obtained with the help of the other two 
ways described above can be considered as 
approximate consequences of the equation of 
motion. 
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APPENDIX the interface 

In the present paper it has been assumed that 
E = 0 at the fluid boundary. The turbulent kine- 
matic viscosity, however, has on the interface 
values different from zero, since the velocity 
component along a direction perpendicular to 
the direction of mean motion is not nil for a 
moving boundary. It should be noted, ,however, 
that for the mass transfer through a moving 
boundary only the velocity relative to the inter- 
face ~ntribut~ to the transfer by convection 
in the direction normal to the wall. This relative 
velocity is zero on the interface and consequently 
the coefficient of turbulent diffusion vanishes at 
the interface. This conclusion may be also 
arrived at in the following quantitative way. The 
equation of convective diffusion for a film of 
liquid in turbulent motion along a wall has the 
form 

y=s-y, x=x, t=t. h42) 

But in the case of turbulent motion the thickness 
6 of the film is (a random) function of x and t. For 
this reason the change of variable mentioned 
above transforms equation (Al) in : 

But the kinematic condition at the interface 
leads to 

Equation (A9 points to the conclusion that the 
term 

( 

as 
a+u;-v$ 

>. 
of equation (A3), which represents the effect of 
convection along a direction ~rpendicular to 
the wall, is nil at the interface. It is therefore 
natural that turbulent diffusion, which derives 
in fact from this term, should be nil at the inter- 
face. 

ac ,+u~+v+~. (AlI 

where Y represents the distance from the wall. 
For mass transfer through a moving interface 

we are concerned in following up a process that 
takes place with respect to another reference 
system, namely a reference system attached to 

(A3) 

(A4) 

RCumC-Les modhles de renouvellement utilists par plusieurs auteurs pour rtprtsenter le processus 
turbulent au voisinage d’une paroi donne seulement la dependance du coefficient de transport en fonction 
du coefficient de diffusion ou de la diffusivite thermique. Dans cet article, on suggtre un certain nombre 
de methodes au moyen desquelles on peut completer a I’aide de l’hydrodynamique les renseignements 
partiels donnes par les modbles de renouvellement. La premiere methode utilise des considerations dimen- 
sionnelles semblables a celles de la thtorie classique; ia deuxieme est basee sur la thiorie de l’instabiliti et 
la troisieme sur certaines hypotheses concernant la forme des solutions de l’tquation du mouvement dans 
le regime turbulent quasi-permanents La premiere mtthode est appliquee au transport de masse au voisin- 
age d’une paroi solide et Cgalement au transport de masse au voisinage d’une surface fluide. Les deux 
autres methodes sont appliquees au cas du transport de masse dans un film iiquide s’ecoulant le long 
d’une paroi verticale et au cas du transport de chaleur entre un lit fluidise et une paroi. 

Une comparaison entre la methode du modele physique et la methode classique est egalement donnee. 

Zusammenfassung-Die Erneuerungsmodelle die von verschiedenen Autoren zur Darstellung des turbulen- 
ten Prozesses in der Umgebung einer Begrenzung verwendet werden geben nur die Abhlngigkeit des 
Ubergangskoeffzienten vom Diffusionskoeffizienten oder der thermischen Diffusivitlt. In vorhegender 
Arbeit werden eine Reihe von Moglichkeiten vorgeschlagen wodurch diese von den Erneuerungsmodellen 
erhaltene Information mit Angaben iiber die hydrodynamische Natur vervollstlndigt werden kann. Die 
erste Moglichkeit verwendet Dimensionsbetrachtungen ahnlich der klassischen Theorie die zweite beruht 
auf der Instabilitltstheorie und die dritte auf gewissen Annahmen fiir die Form der Lijsungen der Be- 
wegungsgleichungen im turbulenten quasistation~ren &stand. Die erste M~glickheit wird auf den Stoff- 
iibergang in der NSihe sowohl einer festen Begrenzung afs such einer fliissigen angewandt. Die b&den an- 
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deren Moglichkeiten werden fur den Fall des Stoffiibergangs in einem Fliissigkeitshlm der sich entlang 
einer senkrechten Wand bewegt und fiir den Warmeiibergang zwischen einem Fliessbett und der Wand 
verwendet. Ein Vergleich zwischen der physikalischen Modellmethode und der klassischen ist ebenfalls 

gemacht. 

~~~~~qg~f_Mmnm~~ nn~~~~~nanour,,a 
“,A”++VY”L Y”““‘ULI”Y”.VLLI.~., ‘.“‘“y’Y’.... “V.‘“‘“yLV” 

urvvFnnI.,M~ “IIvn’FnnLrP aBT()ps _ly”_y” “nnr?y~“TC,q A”y,q 

OIIMCaHBH Typ6yJIeHTHOrO IlpOqeCCa B6Jln3H rpaHIlI&l pa3HeJla, II03BOJIFlIOT OIIpe&(eJIETTb 

TOJlbKOBJUfRHHe KO3~~w~aeHTaAa~~y3aAMaCCbIElJIRTenjIaHaKO3~~llqaeHTTennOO6MeHa. 

B AaHHOt CTaTbe ItpeAJIO?KeH pHA MeTOAOB,C IIOMOUbKl KOTOpblX 3TM HeIIOJIHbIe CBeAeHRR 

MOH(H0 AOtIOJlHRTb AaHHbIMH rHApOARHaMAqeCKOr0 XapaKTepa. B OCHOBe IIepBOrO MeTOAa 

JIelKaT IIpHHqHIIbl pa3MepHOCTI+, 06bIYHO HCItOJIb3yeMble B KJIaCCWleCKO?i TeOpMH, BTOpOrO- 

TeOp~FlHeyCTO~~~BOCT~,TpeTberO-O~pe~e~eHH~e3aKOHOMepHOCTLI,BbITeKaH)~Ile113~O~y~e- 

HIlR OTHOCHTeJIbHO BAAa peLIIeHPiti ypaBHeHIlR ABLl~eHAR AJIFI Typ6yJIeHTHOrO KBa3MCTaqHO- 

HapHOrO COCTORHIIR.~epBbItiMeTOJI IIpMMeHfleTCfl B CJIyqae ItepeHOCaMaCCbIB6Jlki3IlTBepAOti 

rpamqbr, a TaKme nepeHoca iwacm ~6~114311 rpaHmqbI RWAK~CTA. Asa gpyrnx MeToAa npw 

MeHRH)TCfl B CJIyqae IIepeHOCa MaCCbI B ABWKy~etiCH IIJIeHKe HWJQKOCTH Ha BepTHKaJIbHOti 

CTeHKe II IIepeHOCa MaCCbI MeNAy IICeBAOOHWHCeHHMM CJIOeM M CTeHKOfi. 

npOBeAeH0 CpaBHeHHe MeTOAa @H3FIeCKOi MOAeJIll C KJIaCCHqeCKHM MeTOAOM. 


